[EPUB] Modeling And Simulation For Reactive Distillation Process

Right here, we have countless ebook modeling and simulation for reactive distillation process and collections to check out. We additionally present variant types and afterward type of the books to browse. The okay book, fiction, history, novel, scientific research, as competently as various additional sorts of books are readily friendly here.

As this modeling and simulation for reactive distillation process, it ends taking place beast one of the favored books modeling and simulation for reactive distillation process collections that we have. This is why you remain in the best website to look the incredible book to have.

Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and various techniques—including flamelet, ILDM, and Redim—for jet flames and plumes, with solutions for both. In addition, the book includes techniques to accelerate the convergence of numerical simulation, and a discussion on the analysis of uncertainties with numerical results, making this a useful reference for anyone who is interested in both combustion in free flow and in porous media. Helps readers learn how to apply applications of numerical methods to simulate geochemical kinetics

Presents methods on how to transform the transport equations in several coordinate systems Includes discussions of the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms, including the most common methods used in practical
greater facility in the derivation and solution of conservation equations in geochemical flow problems

Modeling and Simulation of Reactive Distillation Column for the Production of Methyl Tertiary Butyl Ether (MTBE) - Muhamad Nazri Murat - 2002

Chemically Reacting Flow - Robert J. Kee - 2017-09-27
A guide to the theoretical underpinnings and practical applications of chemically reacting flow. Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition combines fundamental concepts in fluid mechanics and physical chemistry while helping students and professionals to develop the analytical and simulation skills needed to solve real-world engineering problems. The authors clearly explain the theoretical and computational building blocks enabling readers to extend the approaches described to related or entirely new applications. New to this Second Edition are substantially revised and reorganized coverage of topics treated in the first edition. New material in the book includes two important areas of active research: reactive porous-media flows and electrochemical kinetics. These topics create bridges between traditional fluid-flow simulation approaches and transport within porous-media electrochemical systems. The first half of the book is devoted to multicomponent fluid-mechanical fundamentals. In the second half the authors provide the necessary fundamental background needed to couple reaction chemistry into complex reacting-flow models. Coverage of such topics is presented in self-contained chapters, allowing a great deal of flexibility in course curriculum design. • Features new chapters on reactive porous-media flow, electrochemistry, chemical thermodynamics, transport properties, and solving differential equations in MATLAB • Provides the theoretical underpinnings and practical applications of chemically reacting flow • Emphasizes fundamentals, allowing the analyst to understand fundamental theory underlying reacting-flow simulations • Helps readers to acquire

new or unusual circumstances • Reorganized to facilitate use as a class text and now including a solutions manual for academic adopters Computer simulation of reactive systems is highly efficient and cost-effective in the development, enhancement, and optimization of chemical processes. Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition helps prepare graduate students in mechanical or chemical engineering, as well as research professionals in those fields take utmost advantage of that powerful capability.

Chemically Reacting Flow - Robert J. Kee - 2017-09-27
A guide to the theoretical underpinnings and practical applications of chemically reacting flow. Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition combines fundamental concepts in fluid mechanics and physical chemistry while helping students and professionals to develop the analytical and simulation skills needed to solve real-world engineering problems. The authors clearly explain the theoretical and computational building blocks enabling readers to extend the approaches described to related or entirely new applications. New to this Second Edition are substantially revised and reorganized coverage of topics treated in the first edition. New material in the book includes two important areas of active research: reactive porous-media flows and electrochemical kinetics. These topics create bridges between traditional fluid-flow simulation approaches and transport within porous-media electrochemical systems. The first half of the book is devoted to multicomponent fluid-mechanical fundamentals. In the second half the authors provide the necessary fundamental background needed to couple reaction chemistry into complex reacting-flow models. Coverage of such topics is presented in self-contained chapters, allowing a great deal of flexibility in course curriculum design. • Features new chapters on reactive porous-media flow, electrochemistry, chemical thermodynamics, transport properties, and solving differential equations in MATLAB • Provides the theoretical underpinnings and practical applications of chemically reacting flow • Emphasizes fundamentals, allowing the analyst to understand fundamental theory underlying reacting-flow simulations • Helps readers to acquire greater facility in the derivation and solution of conservation equations in
Numerical models of these systems are also similar, and these similarities and now including a solutions manual for academic adopters. Computer simulation of reactive systems is highly efficient and cost-effective in the development, enhancement, and optimization of chemical processes. Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition helps prepare graduate students in mechanical or chemical engineering, as well as research professionals in those fields take utmost advantage of that powerful capability.

Modelling and Simulation of Ethyl Acetate Reactive Distillation Column Using ASPEN PLUS.
In this thesis, we study the modeling and simulation of a reactive distillation column for the production of ethyl acetate from acetic acid and ethyl alcohol using ASPENPLUS. Starting from a conventional configuration, which involves feeding in a single tray, different configuration is proposed and various specifications are studied for the attainment of higher conversion and purity at the steady state. In ASPEN DYNAMICS an analysis of the column dynamics is then performed. Cascade control structure is studied for the base design.

Modelling and Simulation of Ethyl Acetate Reactive Distillation Column Using ASPEN PLUS.
In this thesis, we study the modeling and simulation of a reactive distillation column for the production of ethyl acetate from acetic acid and ethyl alcohol using ASPENPLUS. Starting from a conventional configuration, which involves feeding in a single tray, different configuration is proposed and various specifications are studied for the attainment of higher conversion and purity at the steady state. In ASPEN DYNAMICS an analysis of the column dynamics is then performed. Cascade control structure is studied for the base design.

Numerical Simulation of Reactive Flow - Elaine S. Oran - 2005-11-10
Reactive flows encompass a broad range of physical phenomena, interacting over many different time and space scales. Such flows occur in combustion, chemical lasers, the earth's oceans and atmosphere, and in stars. Because of a similarity in their descriptive equations, procedures for constructing numerical models of these systems are also similar, and these similarities can be exploited. Moreover, using the latest technology, what were once difficult and expensive computations can now be done on desktop computers. This new edition of a highly successful book presents algorithms useful for reactive flow simulations, describes trade-offs involved in their use, and gives guidance for building and using models of complex reactive flows. It takes account of the explosive growth in computer technology and the greatly increased capacity for solving complex reactive-flow problems that has occurred since the previous edition was published more than fifteen years ago. An indispensable guide on how to construct, use, and interpret numerical simulations of reactive flows, this book will be welcomed by advanced undergraduate and graduate students, and a wide range of researchers and practitioners in engineering, physics, and chemistry.

Reactive Distillation: Modeling and Simulation Using Aspen Plus -
Reactive Distillation: Modeling and Simulation Using Aspen Plus - Sohail Lone - 2012

The articles in this volume summarize the research results obtained in the former SFB 359 "Reactive Flow, Diffusion and Transport" which has been supported by the DFG over the period 1993-2004. The main subjects are physical-chemical processes sharing the difficulty of interacting diffusion, transport and reaction which cannot be considered separately. The modeling and simulation within this book is accompanied by experiments.

The articles in this volume summarize the research results obtained in the former SFB 359 "Reactive Flow, Diffusion and Transport" which has been supported by the DFG over the period 1993-2004. The main subjects are physical-chemical processes sharing the difficulty of interacting diffusion, transport and reaction which cannot be considered separately. The modeling and simulation within this book is accompanied by experiments.

Modeling and Simulation of Reactive Dissolution and Wormhole Formation in Carbonate Rocks - Priyank Maheshwari - 2014
Reactive dissolution of carbonate rocks is a common technique used to stimulate the oil and gas wells. In this process, an acidic solution is injected into the porous rock. The acid dissolves some of the rock and creates highly conducting channels. These channels facilitate the flow of hydrocarbons during the production phase and lead to enhanced production. The shape and structure of these conducting channels depends upon the combined effect of acid transport, reaction, and rock properties. For instance, at a very low injection rate (such that the characteristic time scale for reaction is very low compared to acid transport), acid continues dissolving the entire face of the rock, causing facial dissolution. Conversely, at a very high injection rate (such that the characteristic time scale for acid transport is very low compared to reaction), acid reaches every part of the domain and increases the porosity and permeability uniformly, causing uniform dissolution. At intermediate flow rates, where both convection and transverse dispersion are comparable in magnitude, long channels called wormholes are formed. These are recognized as the most efficient means to stimulate wells. In this work, we present 3-D numerical simulations and analysis of reactive dissolution and wormhole formation in carbonates with Newtonian and non-Newtonian acids using a two-scale continuum model. More specifically, we present a sensitivity analysis of the dissolution process with respect to acid injection rate, molecular diffusivity, rheological models, dissolution rate constant and rock properties such as initial average permeability, heterogeneity and permeability-porosity relationships. Additionally, we develop a new two-parameter (pore connectivity and pore broadening) structure-property relation to account for change in permeability, pore radius and interfacial area per unit volume with porosity, unlike to previous studies where only one parameter was used. We also present scaling criteria to estimate the wormhole tip diameter and optimum acid injection rate, for vuggy and non-vuggy carbonates with Newtonian and non-Newtonian acids. Finally, we present the flow dynamics of acid during wormhole formation and compare the simulation results with the available experimental data.

Modeling and Simulation of Reactive Dissolution and Wormhole Formation in Carbonate Rocks - Priyank Maheshwari - 2014
Reactive dissolution of carbonate rocks is a common technique used to stimulate the oil and gas wells. In this process, an acidic solution is injected into the porous rock. The acid dissolves some of the rock and creates highly conducting channels. These channels facilitate the flow of hydrocarbons during the production phase and lead to enhanced production. The shape and structure of these conducting channels depends upon the combined effect of acid transport, reaction, and rock properties. For instance, at a very low injection rate (such that the characteristic time scale for reaction is very low compared to acid transport), acid continues dissolving the entire face of the rock, causing facial dissolution. Conversely, at a very high injection rate (such that the characteristic time scale for acid transport is very low compared to reaction), acid reaches every part of the domain and increases the porosity and permeability uniformly, causing uniform dissolution. At intermediate flow rates, where both convection and...
wormholes are formed. These are recognized as the most efficient means to stimulate wells. In this work, we present 3-D numerical simulations and analysis of reactive dissolution and wormhole formation in carbonates with Newtonian and non-Newtonian acids using a two-scale continuum model. More specifically, we present a sensitivity analysis of the dissolution process with respect to acid injection rate, molecular diffusivity, rheological models, dissolution rate constant and rock properties such as initial average permeability, heterogeneity and permeability-porosity relationships. Additionally, we develop a new two-parameter (pore connectivity and pore broadening) structure-property relation to account for change in permeability, pore radius and interfacial area per unit volume with porosity, unlike to previous studies where only one parameter was used. We also present scaling criteria to estimate the wormhole tip diameter and optimum acid injection rate, for vuggy and non-vuggy carbonates with Newtonian and non-Newtonian acids. Finally, we present the flow dynamics of acid during wormhole formation and compare the simulation results with the available experimental data.

OpenGeoSys Tutorial - Eunseo Jang - 2017-10-31

This tutorial provides the application of the coupling interface OGS#IPhreeqc (open-source scientific software) to model reactive mass transport processes in environmental subsurface systems. It contains general information regarding reactive transport modeling and step-by-step model set-up with OGS#IPhreeqc and related components such as GINA and ParaView. Benchmark examples (1D to 2D) are presented in detail. The book is intended primarily for graduate students and applied scientists who deal with reactive transport modeling. It also gives valuable information to the professional geoscientists wishing to advance their knowledge in numerical simulation, with the focus on the fate and transport of nitrate. It is the third volume in a series that represents the further application of computational modeling in hydrological science.

Numerical Simulation of Reactive Flow - Elaine S. Oran - 2000-11-06

Reactive flows encompass a broad range of physical phenomena, interacting over many different time and space scales. Such flows occur in combustion, chemical lasers, the earth's oceans and atmosphere, and in stars. Because of a similarity in their descriptive equations, procedures for constructing numerical models of these systems are also similar, and these similarities can be exploited. Moreover, using the latest technology, what were once difficult and expensive computations can now be done on desktop computers. This new edition of a highly successful book presents algorithms useful for reactive flow simulations, describes trade-offs involved in their use, and gives guidance for building and using models of complex reactive flows. It takes account of the explosive growth in computer technology and the greatly increased capacity for solving complex reactive-flow problems that has occurred since the previous edition was published more than fifteen years ago. An indispensable guide on how to construct, use, and interpret numerical simulations of reactive flows, this book will be welcomed by advanced undergraduate and graduate students, and a wide range of researchers and practitioners in engineering, physics, and chemistry.

OpenGeoSys Tutorial - Eunseo Jang - 2017-10-31

This tutorial provides the application of the coupling interface OGS#IPhreeqc (open-source scientific software) to model reactive mass transport processes in environmental subsurface systems. It contains general information regarding reactive transport modeling and step-by-step model set-up with OGS#IPhreeqc and related components such as GINA and ParaView. Benchmark examples (1D to 2D) are presented in detail. The book is intended primarily for graduate students and applied scientists who deal with reactive transport modeling. It also gives valuable information to the professional geoscientists wishing to advance their knowledge in numerical simulation, with the focus on the fate and transport of nitrate. It is the third volume in a series that represents the further application of computational modeling in hydrological science.
chemical equations. Thus, it provides the in-depth background required by can be exploited. Moreover, using the latest technology, what were once difficult and expensive computations can now be done on desktop computers. This new edition of a highly successful book presents algorithms useful for reactive flow simulations, describes trade-offs involved in their use, and gives guidance for building and using models of complex reactive flows. It takes account of the explosive growth in computer technology and the greatly increased capacity for solving complex reactive-flow problems that has occurred since the previous edition was published more than fifteen years ago. An indispensable guide on how to construct, use, and interpret numerical simulations of reactive flows, this book will be welcomed by advanced undergraduate and graduate students, and a wide range of researchers and practitioners in engineering, physics, and chemistry.

Dcharts, a Formalism for Modeling and Simulation Based Design of Reactive Software Systems - Huining Feng - 2004
"Applications of the DCharts formalism are studied, by means of the above-mentioned tools. They demonstrate how DCharts are ready for practical use." --

Dcharts, a Formalism for Modeling and Simulation Based Design of Reactive Software Systems - Huining Feng - 2004
"Applications of the DCharts formalism are studied, by means of the above-mentioned tools. They demonstrate how DCharts are ready for practical use." --

Numerical Simulation of Reactive Flow in Hot Aquifers - Christoph Clauser - 2012-12-06
This product, consisting of a CD-ROM and a book, deals with the numerical simulation of reactive transport in porous media using the simulation package SHEMAT/Processing SHEMAT. SHEMAT (Simulator for HEat and MAss Transport) is an easy-to-use, general-purpose reactive transport simulation code for a wide variety of thermal and hydrogeological problems in two or three dimensions. The book is a richly documented manual for users of this software which discusses in detail the coded physical and chemical equations. Thus, it provides the in-depth background required by those who want to apply the code for solving advanced technical and scientific problems. The enclosed companion CD-ROM contains the software and data for all of the case studies. The software includes user-friendly pre- and post-processors which make it very easy to set up a model, run it and view the results, all from one platform. Therefore, the software is also very suitable for academic or technical "hands-on" courses for simulating flow, transport of heat and mass, and chemical reactions in porous media. You can find a link to the updated software on springer.com.

Reactive Transport in Natural and Engineered Systems - Jennifer Druhan - 2020-03-04
Open system behavior is predicated on a fundamental relationship between the timescale over which mass is transported and the timescale over which it is chemically transformed. This relationship describes the basis for the multidisciplinary field of reactive transport (RT). In the 20 years since publication of Review in Mineralogy and Geochemistry volume 34: Reactive
Modeling, simulation and design of reactive distillation columns - applications largely based in contaminant hydrology to become broadly utilized throughout the Earth Sciences. RT is now employed to address a wide variety of natural and engineered systems across diverse spatial and temporal scales, in tandem with advances in computational capability, quantitative imaging and reactive interface characterization techniques. The present volume reviews the diversity of reactive transport applications developed over the past 20 years, ranging from the understanding of basic processes at the nano- to micrometer scale to the prediction of Earth global cycling processes at the watershed scale. Key areas of RT development are highlighted to continue advancing our capabilities to predict mass and energy transfer in natural and engineered systems.

Reactive Transport in Natural and Engineered Systems - Jennifer Druhan - 2020-03-04
Open system behavior is predicated on a fundamental relationship between the timescale over which mass is transported and the timescale over which it is chemically transformed. This relationship describes the basis for the multidisciplinary field of reactive transport (RT). In the 20 years since publication of Review in Mineralogy and Geochemistry volume 34: Reactive Transport in Porous Media, RT principles have expanded beyond early applications largely based in contaminant hydrology to become broadly utilized throughout the Earth Sciences. RT is now employed to address a wide variety of natural and engineered systems across diverse spatial and temporal scales, in tandem with advances in computational capability, quantitative imaging and reactive interface characterization techniques. The present volume reviews the diversity of reactive transport applications developed over the past 20 years, ranging from the understanding of basic processes at the nano- to micrometer scale to the prediction of Earth global cycling processes at the watershed scale. Key areas of RT development are highlighted to continue advancing our capabilities to predict mass and energy transfer in natural and engineered systems.

Modeling, simulation and design of reactive distillation columns - Hoshang Eruch Subawalla - 1997

Hoshang Eruch Subawalla - 1997

Modeling of Microscale Transport in Biological Processes - Sid Becker - 2016-12-27
Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through biofilms and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels. Features recent developments in theoretical and computational modeling for clinical researchers and engineers Further researcher understanding of fluid flow in biological media and focuses on biofluidics at the microscale. Includes chapters expertly authored by internationally recognized authorities in the fundamental and applied fields that are associated with microscale transport in living media.

Modeling of Microscale Transport in Biological Processes - Sid Becker - 2016-12-27
Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-
regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.

Chemical Reactor Modeling - Hugo A. Jakobsen - 2014-04-02
Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.

Packed Reactive Distillation Columns - Sébastien Walter Lextrait - 2003
Packed Reactive Distillation Columns - Sébastien Walter Lextrait - 2003

Parallel Large Eddy SImulation for Turbulent Reactive Flow Modeling - - 2015

Parallel Large Eddy SImulation for Turbulent Reactive Flow Modeling - - 2015

Chemical Reactor Modeling - Hugo A. Jakobsen - 2014-04-02
Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.
Post-combustion Carbon Capture by Reactive Absorption Using Aqueous Amine Solutions - Inga von Harbou - 2013

Reactive Transport Modeling - Yitian Xiao - 2018-03-14
Teaches the application of Reactive Transport Modeling (RTM) for subsurface systems in order to expedite the understanding of the behavior of complex geological systems. This book lays out the basic principles and approaches of Reactive Transport Modeling (RTM) for surface and subsurface environments, presenting specific workflows and applications. The techniques discussed are being increasingly commonly used in a wide range of research fields, and the information provided covers fundamental theory, practical issues in running reactive transport models, and how to apply techniques in specific areas. The need for RTM in engineered facilities, such as nuclear waste repositories or CO2 storage sites, is ever increasing, because the prediction of the future evolution of these systems has become a legal obligation. With increasing recognition of the power of these approaches, and their widening adoption, comes responsibility to ensure appropriate application of available tools. This book aims to provide the requisite understanding of key aspects of RTM, and in doing so help identify and thus avoid potential pitfalls. Reactive Transport Modeling covers: the application of RTM for CO2 sequestration and geothermal energy development; reservoir quality prediction; modeling diagenesis; modeling geochemical processes in oil & gas production; modeling gas hydrate production; reactive transport in fractured and porous media; reactive transport studies for nuclear waste disposal; reactive flow modeling in hydrothermal systems; and modeling biogeochemical processes. Key features include: A comprehensive reference for scientists and practitioners entering the area of reactive transport modeling (RTM) Presented by internationally known experts in the field Covers fundamental theory, practical issues in running reactive transport models, and hands-on examples for applying techniques in specific areas Teaches readers to appreciate the power of RTM and to stimulate usage and application.
Reactive Absorption of Carbon Dioxide - 2014

A Numerical Model for the Simulation of Reactive Melt Infiltration - Emily Sue Nelson - 1998

ELECTRONIC FILE CHARACTERISTICS: 30 files; Adobe Acrobat (.PDF) and HTML. PHYSICAL DESCRIPTION: 1 CD-ROM; 4 3/4 in.; 15.5 MB.

ABSTRACT: The lecture series addressed the chemical non-equilibrium phenomena in the context of hypersonic re-entry flow. The objectives were to review the up-to-date experimental techniques, the theoretical models, as well as the numerical simulation strategies involved in the treatment of the chemical characters of high temperatures gases. Focusing on re-entry situation the presentations dealt with high temperature gas chemistry and also on gas-surface interaction known as catalytic effects for space vehicles. A systematic review has been presented from the detailed modeling of the microscopic level phenomena to the implementation of models for applied CDF on re-entry vehicles. As a first conclusion it appears that the bridge from the lower scale to the macroscopic surface recombination properties need further studies to be efficiently establish.

Reactive Flows, Diffusion and Transport - Willi Jäger - 2006-10-16

The articles in this volume summarize the research results obtained in the former SFB 359 "Reactive Flow, Diffusion and Transport" which has been supported by the DFG over the period 1993-2004. The main subjects are physical-chemical processes sharing the difficulty of interacting diffusion, transport and reaction which cannot be considered separately. The modeling and simulation within this book is accompanied by experiments.

Reactive Flows, Diffusion and Transport - Willi Jäger - 2006-10-16

The articles in this volume summarize the research results obtained in the former SFB 359 "Reactive Flow, Diffusion and Transport" which has been supported by the DFG over the period 1993-2004. The main subjects are physical-chemical processes sharing the difficulty of interacting diffusion, transport and reaction which cannot be considered separately. The modeling and simulation within this book is accompanied by experiments.

Modeling of Process Intensification - Frerich Keil - 2007-04-09

Combining the knowledge involved in process engineering and process
Modeling of Process Intensification - Frerich Keil - 2007-04-09
Combining the knowledge involved in process engineering and process modeling, this title covers modeling methods applicable to process intensification.

FACTS - Enrique Acha - 2004-10-22
The first book to provide comprehensive coverage of FACTS power systems modeling and simulation. * Detailed coverage of the development of FACTS controllers and guidance on the selection of appropriate equipment * Computer modelling examples of the FACTS controllers for steady-state and transient stability systems * Numerous case studies and practical examples

This proceedings volume contains a selection of papers presented at the symposium "International Conference on High Performance Scientific Computing" held at the Hanoi Institute of Mathematics of the Vietnam National Center for Natural Science and Technology (NCST), March 10-14, 2003. The conference has been organized by the Hanoi Institute of Mathematics, SFB 359 "Reactive Flows, Transport and Diffusion", Heidelberg, Ho Chi Minh City University of Technology and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg.

VSC-FACTS-HVDC - Enrique Acha - 2019-04-04
An authoritative reference on the new generation of VSC-FACTS and VSC-HVDC systems and their applicability within current and future power systems VSC-FACTS-HVDC and PMU: Analysis, Modelling and Simulation in Power Grids provides comprehensive coverage of VSC-FACTS and VSC-HVDC systems within the context of high-voltage Smart Grids modelling and simulation. Readers are presented with an examination of the advanced computer modelling of the VSC-FACTS and VSC-HVDC systems for steady-state, optimal solutions, state estimation and transient stability analyses, including numerous case studies for the reader to gain hands-on experience
coverage of electromagnetic transient studies of VSC-FACTS and VSC-HVDC systems using the de-facto industry standard PSCAD /EMTDC simulation package. An essential guide for utility engineers, academics, and research students as well as industry managers, engineers in equipment design and manufacturing, and consultants.

Modeling and Simulation in Engineering Sciences - Noreen Sher Akbar - 2016-08-31

This book features state-of-the-art contributions in mathematical, experimental and numerical simulations in engineering sciences. The contributions in this book, which comprise twelve chapters, are organized in six sections spanning mechanical, aerospace, electrical, electronic, computer, materials, geotechnical and chemical engineering. Topics include metal micro-forming, compressible reactive flows, radio frequency circuits, barrier infrared detectors, fiber Bragg and long-period fiber gratings, semiconductor modelling, many-core architecture computers, laser processing of materials, alloy phase decomposition, nanofluids, geo-materials and rheo-kinetics. Contributors are from Europe, China, Mexico, Malaysia and Iran. The chapters feature many sophisticated approaches including Monte Carlo simulation, FLUENT and ABAQUS computational modelling, discrete element modelling and partitioned frequency-time methods. The book will be of interest to researchers and also consultants engaged in many areas of engineering simulation.

Modeling and Simulation in Engineering Sciences - Noreen Sher Akbar - 2016-08-31

This book features state-of-the-art contributions in mathematical, experimental and numerical simulations in engineering sciences. The contributions in this book, which comprise twelve chapters, are organized in six sections spanning mechanical, aerospace, electrical, electronic,
Materials address significant developments in the field of micro- and metal micro-forming, compressible reactive flows, radio frequency circuits, barrier infrared detectors, fiber Bragg and long-period fiber gratings, semiconductor modelling, many-core architecture computers, laser processing of materials, alloy phase decomposition, nanofluids, geomaterials and rheo-kinetics. Contributors are from Europe, China, Mexico, Malaysia and Iran. The chapters feature many sophisticated approaches including Monte Carlo simulation, FLUENT and ABAQUS computational modelling, discrete element modelling and partitioned frequency-time methods. The book will be of interest to researchers and also consultants engaged in many areas of engineering simulation.

Modelling and Simulation in the Science of Micro- and Meso-Porous Materials addresses significant developments in the field of micro- and meso-porous science. The book includes sections on Structure Modeling and Prediction, Synthesis, Nucleation and Growth, Sorption and Separation processes, Reactivity and Catalysis, and Fundamental Developments in Methodology to give a complete overview of the techniques currently utilized in this rapidly advancing field. It thoroughly addresses the major challenges in the field of microporous materials, including the crystallization mechanism of porous materials and rational synthesis of porous materials with controllable porous structures and compositions. New applications in emerging areas are also covered, including biomass conversion, C1 chemistry, and CO2 capture. Authored and edited by experts in the field of micro- and meso-porous materials Includes introductory material and background both on the science of microporous materials and on the techniques employed in contemporary modeling studies Rigorous enough for scientists conducting related research, but also accessible to graduate students in chemistry, chemical engineering, and materials science.

Modeling and Simulation of Turbulent Combustion - Santanu De - 2017-12-12
This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Modelling and Simulation in the Science of Micro- and Meso-Porous Materials addresses significant developments in the field of micro- and metal micro-forming, compressible reactive flows, radio frequency circuits, barrier infrared detectors, fiber Bragg and long-period fiber gratings, semiconductor modelling, many-core architecture computers, laser processing of materials, alloy phase decomposition, nanofluids, geomaterials and rheo-kinetics. Contributors are from Europe, China, Mexico, Malaysia and Iran. The chapters feature many sophisticated approaches including Monte Carlo simulation, FLUENT and ABAQUS computational modelling, discrete element modelling and partitioned frequency-time methods. The book will be of interest to researchers and also consultants engaged in many areas of engineering simulation.

Modelling and Simulation in the Science of Micro- and Meso-Porous Materials addresses significant developments in the field of micro- and metal micro-forming, compressible reactive flows, radio frequency circuits, barrier infrared detectors, fiber Bragg and long-period fiber gratings, semiconductor modelling, many-core architecture computers, laser processing of materials, alloy phase decomposition, nanofluids, geomaterials and rheo-kinetics. Contributors are from Europe, China, Mexico, Malaysia and Iran. The chapters feature many sophisticated approaches including Monte Carlo simulation, FLUENT and ABAQUS computational modelling, discrete element modelling and partitioned frequency-time methods. The book will be of interest to researchers and also consultants engaged in many areas of engineering simulation.

Modelling and Simulation of Turbulent Combustion - Santanu De - 2017-12-12
This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.
Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays - Bart Merci - 2014-04-02
This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth chapter deals with evaporation effects in the context of flamelet models. In chapter five, LES simulation results are discussed for variable fuel and mass loading. The final chapter discusses PDF modelling of turbulent spray combustion. In short, the contributions in this book are highly valuable for the research community in this field, providing in-depth insight into some of the many aspects of dilute turbulent spray combustion.

Near-wall Subgrid Scale Modeling for Large Eddy Simulation of Turbulent Buoyancy Driven Non-reactive and Reactive Flows Using One-dimensional Turbulence
The overall objective of this dissertation is the development of a near-wall modeling and simulation approach for turbulent non-reacting and reacting buoyancy driven flows. The thrust of this effort is two fold. The first is on the development of an advanced near-wall stand-alone model using One Dimensional Model (ODT) of Kerstein to account for the non-linear interactions of turbulent convective, radiation and diffusion processes. Both non-reacting and reacting cases are studied and the results are compared to the experimental data. Overall excellent agreement of simulation results to experimental data and to established inner and outer scaling laws for
The overall objective of this dissertation is the development of a near-wall modeling and simulation approach for turbulent non-reacting and reacting buoyancy driven flows. The thrust of this effort is two fold. The first is on the development of an advanced near-wall stand-alone model using One Dimensional Model (ODT) of Kerstein to account for the non-linear interactions of turbulent convective, radiation and diffusion processes. Both non-reacting and reacting cases are studied and the results are compared to the experimental data. Overall excellent agreement of simulation results to experimental data and to established inner and outer scaling laws for buoyancy driven boundary layers is obtained. A new buoyancy generation production term is proposed in this formulation for ODT which is based on the vorticity transport scaling arguments to account for the generation of large scale eddy mixing events. For reactive flow cases, a new scaling theory is developed based on similitude analysis. The total mass flux of mixture fraction is identified as a fundamental scaling parameter. The verification of these scaling parameters was done using ODT predictions. The second focus of this effort is on the exploration of the ODT as an advanced near-wall sub grid scale (SGS) model for large eddy simulation (LES). The turbulence stresses for the LES grid are computed from the evolving near-wall ODT field whereas the ODT instantaneous velocity and scalar field is obtained from the interpolation of LES field. Results are presented for the evolution of a non-reacting boundary layer. Heat flux on the wall and the other flow field variables including temperature and velocities indicating that an overall better agreement for LES-ODT coupled simulation is obtained than an LES solution of similar grid resolution when comparing both to the Direct Numerical Simulation (DNS).

Near-wall Subgrid Scale Modeling for Large Eddy Simulation of Turbulent Buoyancy Driven Non-reactive and Reactive Flows Using One-dimensional Turbulence - - 2007

The second focus of this effort is on the exploration of the ODT as an advanced near-wall sub grid scale (SGS) model for large eddy simulation (LES). The turbulence stresses for the LES grid are computed from the evolving near-wall ODT field whereas the ODT instantaneous velocity and scalar field is obtained from the interpolation of LES field. Results are presented for the evolution of a non-reacting boundary layer. Heat flux on the wall and the other flow field variables including temperature and velocities indicating that an overall better agreement for LES-ODT coupled simulation is obtained than an LES solution of similar grid resolution when comparing both to the Direct Numerical Simulation (DNS).

Direct Numerical Simulation for Turbulent Reacting Flows - Thierry Baritaud - 1996

Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving problems involving multiple scales, such as how a flammable vapor cloud might behave if ignited, this book provides information on the fundamental topics of toxic, fire, and air explosion modeling, as well as modeling jet and pool fires using computational fluid dynamics. The book goes on to cover nanomaterial toxicity, QPSR analysis on relation of chemical structure to flash point, molecular structure and burning velocity, first principle studies of reactive chemicals, water and air reactive chemicals, and dust explosions. Chemical and process safety professionals, as well as faculty and graduate researchers, will benefit from the detailed coverage provided in this book. Provides the only comprehensive source addressing the use of multiscale modeling in the context of process safety Bridges multiscale modeling with process safety, enabling the reader to understand mapping between problem detail and effective usage of resources Presents an overall picture of addressing safety problems in all levels of modeling and the latest approaches to each in the field Features worked out examples, case studies, and a question bank to aid understanding and involvement for the reader

Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving problems involving multiple scales, such as how a flammable vapor cloud might behave if ignited, this book provides information on the fundamental topics of toxic, fire, and air explosion modeling, as well as modeling jet and pool fires using computational fluid dynamics. The book goes on to cover nanomaterial toxicity, QPSR analysis on relation of chemical structure to flash point, molecular structure and burning velocity, first principle studies of reactive chemicals, water and air reactive chemicals, and dust explosions. Chemical and process safety professionals, as well as faculty and graduate researchers, will benefit from the detailed coverage provided in this book. Provides the only comprehensive source addressing the use of multiscale modeling in the context of process safety Bridges multiscale modeling with process safety, enabling the reader to understand mapping between problem detail and effective usage of resources Presents an overall picture of addressing safety problems in all levels of modeling and the latest approaches to each in the field Features worked out examples, case studies, and a question bank to aid understanding and involvement for the reader

Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.
the channel wall. Finally, we present a conservative, positivity preserving, high resolution nonlinear ALE-FCT scheme. The scheme is proved to be mass conservative in time, and positive at all times. Reactive transport is simulated using this scheme for its validation, to show it convergence, and to compare it against the linear ALE-FCT scheme. The nonlinear ALE-FCT is shown to perform better than the linear ALE-FCT scheme for large time steps.

In this thesis, we study mathematical models and numerical schemes for reactive transport of a soluble substance in deformable media. The medium is a cylindrical channel with compliant adsorbing walls. The solutes are dissolved in a fluid flowing through the channel. The fluid, which carries the solutes, is viscous and incompressible. The problem is modeled by a convection-diffusion adsorption-desorption equation in moving domains. First, we present the mathematical formulation of the model in the arbitrary Lagrangian-Eulerian (ALE) framework. We study the well-posedness of the model. We then discretize the conservative variational form of the problem in the ALE framework in space, using the moving mesh ALE finite element method (ALE-FEM). In time, it is discretized using a novel Patankar linearization technique. We then prove global conditional stability for the fully discrete problem. Next, we present a conservative, positivity preserving, high resolution linear ALE-FCT scheme for this problem in the presence of dominant convection processes and wall reactions on the moving wall. Numerical simulations are performed to show validity of the scheme under various scenarios. The grid convergence of the numerical scheme is studied for the case of fixed meshes and moving meshes in fixed domains. Then, we simulate reactive transport in moving domains under linear and nonlinear wall reactions, and show that the motion of the compliant channel wall enhances adsorption of the solute from the fluid to the channel wall. Finally, we present a conservative, positivity preserving, high resolution nonlinear ALE-FCT scheme. The scheme is proved to be mass conservative in time, and positive at all times. Reactive transport is simulated using this scheme for its validation, to show it convergence, and to compare it against the linear ALE-FCT scheme. The nonlinear ALE-FCT is shown to perform better than the linear ALE-FCT scheme for large time steps.

Distillation - Vilmar Steffen - 2019-12-04

The purpose of this book is to offer readers important topics on the modeling, simulation, and optimization of distillation processes. The book is divided into four main sections: the first section is introduction to the topic, the second presents work related to distillation process modeling, the third deals with the modeling of phase equilibrium, one of the most important steps of distillation process modeling, and the fourth looks at the reactive distillation process, a process that has been applied successfully to a number of applications and has been revealed as a promising strategy for a number of recent challenges.

Distillation - Vilmar Steffen - 2019-12-04

The purpose of this book is to offer readers important topics on the modeling, simulation, and optimization of distillation processes. The book is divided into four main sections: the first section is introduction to the topic, the second presents work related to distillation process modeling, the third deals with the modeling of phase equilibrium, one of the most important steps of distillation process modeling, and the fourth looks at the reactive distillation process, a process that has been applied successfully to a number of applications and has been revealed as a promising strategy for a number of recent challenges.

Reactive Systems - Luca Aceto - 2007-08-09

Formal methods is the term used to describe the specification and verification of software and software systems using mathematical logic. Various methodologies have been developed and incorporated into software tools. An important subclass is distributed systems. There are many books that look at particular methodologies for such systems, e.g. CSP, process
students that describes the various approaches, their strengths and weaknesses, and when they are best used. Milner's CCS and its operational semantics are introduced, together with notions of behavioural equivalence based on bisimulation techniques and with variants of Hennessy-Milner modal logics. Later in the book, the presented theories are extended to take timing issues into account. The book has arisen from various courses taught in Iceland and Denmark and is designed to give students a broad introduction to the area, with exercises throughout.

Reactive Systems - Luca Aceto - 2007-08-09

Formal methods is the term used to describe the specification and verification of software and software systems using mathematical logic. Various methodologies have been developed and incorporated into software tools. An important subclass is distributed systems. There are many books that look at particular methodologies for such systems, e.g. CSP, process algebra. This book offers a more balanced introduction for graduate students that describes the various approaches, their strengths and weaknesses, and when they are best used. Milner's CCS and its operational semantics are introduced, together with notions of behavioural equivalence based on bisimulation techniques and with variants of Hennessy-Milner modal logics. Later in the book, the presented theories are extended to take timing issues into account. The book has arisen from various courses taught in Iceland and Denmark and is designed to give students a broad introduction to the area, with exercises throughout.

System Design, Modeling, and Simulation Using Ptolemy II - Claudius Ptolemaeus - 2013-09-27

This book is a definitive introduction to models of computation for the design of complex, heterogeneous systems. It has a particular focus on cyber-physical systems, which integrate computing, networking, and physical dynamics. The book captures more than twenty years of experience in the Ptolemy Project at UC Berkeley, which pioneered many design, modeling, and simulation techniques that are now in widespread use. All of the methods covered in the book are realized in the open source Ptolemy II modeling framework and are available for experimentation through links provided in the book. The book is suitable for engineers, scientists, researchers, and managers who wish to understand the rich possibilities offered by modern modeling techniques. The goal of the book is to equip the reader with a breadth of experience that will help in understanding the role that such techniques can play in design.